
Top Secret

NATIONAL PHOTOGRAPHIC INTERPRETATION CENTER

PHOTOGRAPHIC NTERPRETATION REPORT

CONCRETE AND STEEL SUPPORT STRUCTURES FOR HARDENED DOME ANTENNAS AT ICBM COMPLEXES IN THE USSR (TSR)

Top Secret

25X1

PIR-024/79 APRIL 1979 Copy 133

Top Secret RUFF ZARF UMBRA

25X1

CONCRETE AND STEEL SUPPORT STRUCTURES FOR HARDENED DOME ANTENNAS AT ICBM COMPLEXES IN THE USSR (TSR)

ABSTRACT

1. (TSR) Since early 1978, concrete and steel support structures for hardened dome antennas have been constructed in deep, square excavations near modified type III-X ICBM launch control facilities and associated launch sites in the USSR. This construction of concrete and steel support structures can now be described in detail because of repeated observations of the construction process. This report presents a detailed description of the construction of these support structures and contains a location map, line drawings, and seven annotated photographs.

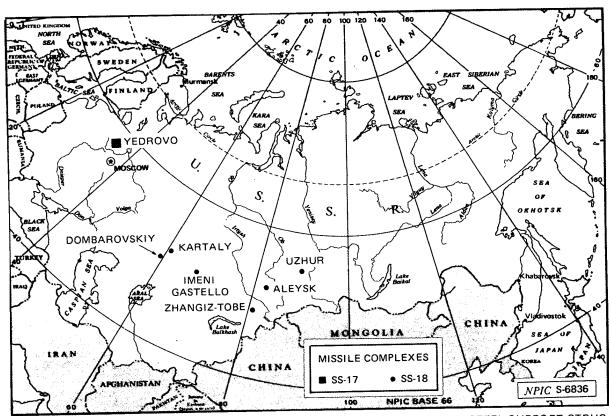


FIGURE 1. LOCATIONS OF SOVIET ICBM COMPLEXES HAVING CONCRETE AND STEEL SUPPORT STRUC-TURES FOR HARDENED DOME ANTENNAS

- 1 -Top Secret 25X1

Top Secret RUFF ZARF UMBRA

INTRODUCTION

2. (TSR) Before 1978, hardened dome antennas were constructed in shallow, circular excavations at type III-X ICBM launch control facilities (LCFs) and associated launch sites in the USSR. Since early 1978, however, hardened dome antennas have been constructed in concrete and steel support structures that are in deep, square excavations at modified type III-X ICBM LCFs* and associated launch sites (Figure 1). The construction of concrete and steel support structures for hardened dome antennas was first reported by NPIC in June 19781 and can now be described in detail because of repeated observations of the construction process. Figure 2 presents detailed line drawings of a top and a side view of one of these structures with a dome antenna in position. Figures 3 through 9 show the sequence of construction through the use of annotated photographs.

BASIC DESCRIPTION

3. (TSR) Concrete and steel support structures are currently being constructed for hardened dome antennas. These structures consist of three subassemblies: a concrete base, a steel honeycomb block with a concrete slab exterior, and a concrete housing for the hardened dome antenna. At the beginning of the construction sequence for the support structure, a ** square excavation is dug, and a concrete base is constructed in it (Figure 3). Next, a steel honeycomb block, is centered on the concrete base. The honeycomb block may be constructed either aboveground before being placed in the excavation or in the excavation itself (Figure 4). The individual structural members of the honeycomb block could not be measured on available imagery, but they appear to consist of thick steel rods. Prefabricated rectangular concrete slabs are subsequently attached to the sides and top of the steel honeycomb block (Figure 5), producing the finished appearance of a solid concrete block. The purpose of the spaces in the steel honeycomb block could not be determined from available imagery; however, no room-size spaces or corridors were discerned in it and only a narrow trench for an antenna feedline connects it to either the collocated LCF or launch silo. Once the exterior of the steel honeycomb block has been covered with concrete slabs, a steel framework for the dome antenna is placed on top. At this point, construction begins on the concrete housing for the dome antenna. The concrete housing probably is constructed by anchoring four heigh corner posts to the upper corners of the steel honeycomb block and then attaching concrete walls to these posts (Figure 6). The space between these walls and the dome antenna framework is subsequently covered with concrete slabs (Figure 7). The dome antenna framework is subsequently covered with concrete slabs (Figure 7). The dome antenna framework then is filled with concrete (Figure 8) and covered with an unidentified type of material having a rippled appearance. This rippled material may be a te
A modified type III-X LCF isdeeper than an unmodified one and has a control support building approximately 100 meters away rather than about 30 meters away.

- 2 -

Top Secret

25X1

25X1

25X1 25X1

25X1

^{**}The excavation depth may be less than 4.3 meters at deployment sites that are to be built up with dirt.

Top Secret RUFF ZARF UMBRA

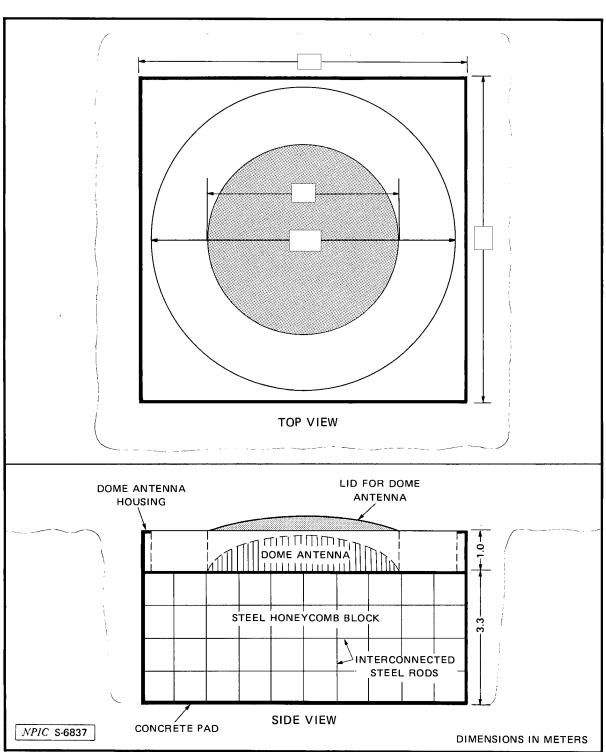


FIGURE 2. LINE DRAWINGS OF CONCRETE AND STEEL SUPPORT STRUCTURE WITH A HARDENED DOME ANTENNA IN POSITION. The dimensions on this line drawing are averages; actual dimensions may vary from facility to facility.

- 3 -

25X1

25X1

25X1

Sanitized Copy Approved for Release 2010/02/22 : CIA-RDP79T01184A000200290001-7 Top Secret RUFF ZARF UMBRA

4. (TSR) The purpose of the concrete and steel support structure for the dome antenna is unknown; however, it seems likely that it provides some degree of hardness for the antenna. The spaces in the steel honeycomb block underneath the dome antenna may be an air cushion that could absorb some of the overpressure from a nuclear blast. The concrete housing for the dome antenna may provide a lateral air cushion, also for protection from a nuclear blast. The concrete and steel support structure may also provide an improved electrical environment for the operation of the dome antenna.

REFERENCES

IMAGERY	
(TSR) All available KEYHOLE imagery acquired through was used in the preparation of this report.	25 X 1
DOCUMENT	
1. NPIC. PIR-026/78, Variations of Hardened Antennas at Modified Type III-X ICBM Launch Control Facilities, USSR, Jun 78 (TOP SECRET	25 X 1 25 X 1
RELATED DOCUMENT	
FTD. Drawing No 78E1502, Hardened Antenna Analysis (U), 30 Jun 78 (TOP SECRET RUFF)	25 X 1
REQUIREMENT	
Project 130069NC	
(S) Comments and queries regarding this report are welcome. They may be directed to Soviet Strategic Forces Division, Imagery Exploitation Group, NPIC,	25X1 25X1

- 6 -

Top Secret

List of Conversion Factors by Classification

UNITS OF LENGTH

UNITS OF MASS

IF YOU HAVE	MULTIPLY BY	TO OBTAIN	IF YOU HAVE	MULTIPLY BY	TO OBTAIN
MILLIMETERS	0.0394	INCHES	KILOGRAMS	2.2046	POUNDS(AVOIR.)
CENTIMETERS	0.3937	INCHES	POUNDS(AVOIR.)	0.4536	KILOGRAMS
INCHES	25.4000	MILLIMETERS	SHORT TONS	0.9072	METRIC TONS
INCHES	2.5400	CENTIMETERS	METRIC TONS	1.1023	SHORT TONS
FEET	0.3048	METERS	METRIC TONS	0.9842	LONG TONS
FEET	0.0003	KILOMETERS	LONG TONS	1.0160	METRIC TONS
YARDS	0.9144	METERS			
METERS	3.2808	FEET			
METERS	0.0005	MILES(NAUTICAL)			
METERS	1.0936	YARDS	UNITS OF VOLUME		
KILOMETERS	3280.8400	FEET			
KILOMETERS	0.6214	MILES(STATUTE)	IF YOU HAVE	MULTIPLY BY	TO OBTAIN
KILOMETERS	0.5400	MILES(NAUTICAL)	LITERS	0.2642	GALLONS
MILES(STATUTE)	1.6093	KILOMETERS	LITERS	0.0063	BARRELS(POL)
MILES(NAUTICAL)	6076.1154	FEET	LITERS	0.0010	CUBIC METERS
MILES(NAUTICAL)	1.8520	KILOMETERS	GALLONS	3.7854	LITERS
MILES(NAUTICAL)	1852.0000	METERS	GALLONS	0.1337	CUBIC FEET
			GALLONS	0.0238	BARRELS(POL)
			GALLONS	0.0038	CUBIC METERS
			BUSHELS	0.0352	CUBIC METERS
ι	JNITS OF AR	EA	CUBIC FEET	7.4805	GALLONS
IF YOU HAVE	MULTIPLY BY	TO OBTAIN	CUBIC FEET	0.1781	BARRELS(POL)
SQUARE CENTIMETERS	0.1550	SQUARE INCHES	CUBIC FEET	0.0283	CUBIC METERS
SQUARE INCHES	6.4516	SQUARE CENTIMETERS	CUBIC YARDS	0.7646	CUBIC METERS
SQUARE FEET	0.0929	SQUARE METERS	BARRELS(POL)	158.9873	LITERS
SQUARE YARDS	0.8361	SQUARE METERS	BARRELS(POL)	42.0000	GALLONS
SQUARE METERS	10.7639	SQUARE FEET	BARRELS(POL)	5.6146	CUBIC FEET
SQUARE METERS	1.1960	SQUARE YARDS	BARRELS(POL)	0.1590	CUBIC METERS
SQUARE METERS	1.0000	CENTARES	CUBIC METERS	1000.0000	LITERS
SQUARE METERS	0.0002	ACRES	CUBIC METERS	264.1721	GALLONS
SQUARE METERS	0.0001	HECTARES	CUBIC METERS	35.3147	CUBIC FEET
ACRES	4046.8564	SQUARE METERS	CUBIC METERS	28.3776	BUSHELS
ACRES	0.4047	HECTARES	CUBIC METERS	6.2898	BARRELS(POL)
HECTARES	10000.0000	SQUARE METERS	CUBIC METERS	1.3080	CUBIC YARDS
HECTARES	2.4711	ACRES			
		•			

Sanitized Copy Approved for Release 2010/02/22 : CIA-RDP79T01184A000200290001-7

Top Secret

Top Secret

Sanitized Copy Approved for Release 2010/02/22 : CIA-RDP79T01184A000200290001-7